BPL Test Sites:

At the present time Electric Broadband and Arizona Public Service have set up 2 test sites in the Cottonwood area. One is located at the East end of Cottonwood Street near the Sawmill Cove housing area and East of the Safeway Shopping Center. The GPS location is; Latitude 34 degrees 43 minutes 43 seconds North by Longitude 112 degrees 00 minutes 03 seconds West. These coordinates were taken at the injection point of this test site. The BPL signals run West through overhead power lines to another repeater and then continue through overhead power lines again finally dropping down into underground lines going across the street North to another repeater site within the Sawmill Cove housing area supplying a number of residential customers. This is designated as Sawmill Cove site area #1 in this report.

The state of the s

The second site is located at the American Heritage Academy at the East end of Cherry Street at 2030 E. Cherry Street. The GPS location is; Latitude 34 degrees 43 minutes 57 seconds North by Longitude 112 degrees 00 minutes 15 seconds West. These coordinates were taken at the injection point of the test site. The power lines run underground to a transformer and a repeater located in the front yard of the American Heritage Academy feeding computers within the Academy and also going North on overhead power lines to Birch Street, approximately 1 block, and turn West on Birch Street, still on overhead power lines along Birch Street to another repeater site. From there the lines go into the Birch Street Apartments for residential use. This site and area is referred to in this report as site #2 American Heritage Academy and site #2 Birch Street Apartments.

Test Results:

The received signal levels in this report are typically expressed in terms of receiver signal-strength meter S units. Although S meters are not absolutely standardized on receivers used in the Amateur Radio Service, most receivers use the following standard for S-meter readings:

S9 = 50 microvolts = -103 dbW across 50 ohms. Each S unit represents a change of 6 db.

S9 -103 dbW

S8 -109 dbW

S7 -115 dbW

S6 -121 dbW

S5 -127 dbW

S4 -133 dbW

S3 -139 dbW

S2 -145 dbW

S1 -151 dbW

Some of the S meter readings in this report also include a "Q" factor. This generally represents the quality of the received signal. A signal that is Q5 may be weak, but it is at least 10 db greater than the ambient noise level, so is perfectly intelligible. A signal that is Q1 is audible, but just above the noise level.

Broadband Over Power Lines Interference Test Results

The actual BPL interference test results were done in the vicinity of the BPL test site power lines, injection points and repeaters as would be typical if these power lines and equipment were running down the backyards of normal residential or business locations. This was done intentionally to reflect interference levels to a typical fixed site Amateur Radio location. Distances to the BPL equipment noted range between 30 feet out to approximately 70 feet unless otherwise noted in each one of the individual exhibits.

The reports taken from the fixed site location of David Kiggins, KB7KMR, were recorded at distances of 0.56 miles from BPL site #1- Sawmill Cove and 0.71 miles from BPL site #2- American Heritage Academy. These distances were determined by the use of a GPS unit. (GPS unit nomenclature: Magellan Sport Trac- 8 satellites were locked 2 of which were WAAS satellites).

The following exhibits correctly characterize the extent of BPL interference taking place to any licensed or unlicensed radio service that is operating within the vicinity of the BPL test sites in the frequency range of 1.8 Mhz through 30 Mhz. It is also noted that while recording these readings attempts were made to contact other Amateur Radio Stations and in most cases communications could not be carried on because of the overwhelming BPL interference.

Equipment used to record these readings is typical Amateur radios that are readily available on the market today and antennas used are typical antennas used by Amateur Radio Operators in mobile operations and in fixed site use.

As seen in the following exhibits, BPL interference in the vicinity of the test sites far overpowers typical noise levels recorded in the Cottonwood area as demonstrated and recorded in the baseline reports mentioned earlier. They even overpower worst case situations of power line noise as recorded directly under main power lines throughout Cottonwood and at the APS sub-station.

The power lines have been turned into radiating long wire antennas throughout the test area and are creating severe interference to licensed users of the 1.8 Mhz to 30 Mhz frequency spectrum. It should also be noted that if this technology is allowed to deploy in Cottonwood or any other place not only will this interference be radiating from the power lines but also the electrical wiring with in the residence or business location as BPL is running through unshielded lines which will radiate just as an antenna does. The interference levels are clearly seen in the following exhibits.

The following report was recorded on May 31, 2004 by Mike Kinney, KU7W and Norm Vandiver, N7VF between 9:00AM and 1:00 PM.

Equipment Used was as follows:

Receiver-

Icom IC 706MK11 solid state

Mode-

SSB

Bandwidth-

2.4 Khz filter

Pre-amp-

Off

Antenna:

Hustler 54inch mast with 400 watt resonators for each band tested mounted on right rear bumper of 2003 Chevrolet pickup.

Feedline:

Coax was 18 feet of RG-58 with a velocity factor of 66% and rated loss of 4.5 DB at 100 feet.

Site #1.

Signal strength readings were taken at the injection point from 3.587 Mhz through 29.204 Mhz. Signal strength

Signal strength readings were taken at the repeater point on 3.89 Mhz through 4.001 Mhz.

Signal strength readings were taken 1/10 of a mile from the repeater point on 3.89 Mhz through 3.994 Mhz, 7.041 Mhz through 7.306 Mhz, 21.105 Mhz through 21.448 Mhz and 28.185 Mhz through 29.204 Mhz.

Signal strength readings were also taken throughout the Sawmill Cove housing area which is all underground lines on 29.063 Mhz and ranged from S-5 through S-7 on the radio.

Site #2

Signal strength readings were taken at the injection point on 28.026 Mhz through 29.119 Mhz.

Signal strength readings were taken at the repeater point on 3.748 Mhz through 4.000 Mhz, 7.020 Mhz through 7.303 Mhz, 10.057 Mhz, 14.016 Mhz through 14.348 Mhz, 18.057 Mhz through 18.120 Mhz, 21.044 Mhz through 21.449 Mhz, 24.937 Mhz, and 29.162 Mhz through 29.200 Mhz.

Signal strength readings were also taken at 1/10 of a mile from the repeater point on 29.026 Mhz and were S-7.

Signal strength readings were taken at 2/10 of a mile from the repeater point on 29.026 Mhz and were S-0 but were still very audible.

Signal strength readings were taken at 3/10 of a mile from the repeater point on 29.026 Mhz and were S-0 but still audible.

Signal strength readings were taken at 4/10 of a mile from the repeater point on 29.026 Mhz and were S-0 but still audible.

Signal strength readings were taken at 5/10 of a mile from the repeater point on 29.026 Mhz and were S-0 but still audible.

Signal strength readings were taken at the Birch street apartments within 60 feet of the repeater point on 3.748 Mhz through 4.000 Mhz, 7.028 Mhz through 7.303 Mhz, 10.057 Mhz, 14.016 Mhz through 14.348 Mhz, 18.057 Mhz through 18.120 Mhz, 21.044 Mhz through 21.449 Mhz, 24.937 Mhz and 29.162 Mhz through 29.200 Mhz.

RFI Measurements of BPL at Cottonwood, Arizona 5/31/04 Site #1

· · · · · · · · · · · · · · · · · · ·							
						68	788.E
COSX,	bumper, 18' of RG58					98	3.704
	Silverado pickup, rigi			6S/9P09	3.89	6S/9P0+	3.69
hevrolet.	Mounted on a 2003 C			6S/9P0+	3.953	109P/28	3.936
	esch band.			6S/9P0>	100.4	68	3.994
3 for	notanoser WOOA diw						3.004
	Antennae: Hustler 54					98	140.7
	To gma-en9					98	712.7
ZH)	SSB filter width 2.4					98	805.7 515.7
	ICOM 706 MII G.						ave L
MICH	Measurements made					23	10.096
						98	840.01
						7 S	10.003
							600.01
						IS	18,105
					 	98	14.098
						98	14.317
		03 10				98	201.12
		04 80				98	21.302
		O4 20				98	21.448
						9S-SS	24.916
						98	24.93
	50 houses.					SS	24.99
approx.	to noisivib pnieuori a						
	Illmwas tuodpuordi		29.204			18	29.204
	Powerlines undergr		29.103			LS	29,103
· ·		0481	28,194			68	28.194
78-28	29.063	Q5 S1	28.185			6S	G81.82
	EBECNENCY MIX	Glonal Strangth	EREQUENCY MAZ	dionais lanois	EBECINENCY MIX	dional Strandia	BEONENCY MIN
COAS,	Ilimwa8	193 80 00	A mort eliM t.	19):	seqsA is	retion	Site of Inje

Site of Injection		at Repeater		Distance from	Repeater	Birch Street A	partments
FREQUENCY Mhz	Signal Strength	FREQUENCY Mhz	Signal Strength	FREQUENCY Mhz	Signal Strength	FREQUENCY Mbz	Signal Strength
29.119	20db/\$9	29.2	S8	.1 Mile		29.2	37
28.599	20db/\$9	29,162	10db/S9	29.026	87	29.162	88
28.397	10db/\$9				•		
28.194	20db/S9	24,937	\$1	.2 Mil		24.937	S0
28.026	20db/S9			29.026	Q5 S0		
	3042.00	21,449	S7			21.449	S5
		21.416	S9	.3 Mile	·	21.416	S7
		21.359	S9	29.026	Q1 S0	21.359	S7
		21.044	S8			21.044	S6
				.4 Mile			
		18,12	\$5	29.026	Q2 S0	18.12	S3
		18.057	S4-S5			18.057	S2-S3
		10.001		.5 Mile			
	<u> </u>	14.016	S7	29.026	Q1 S0	14.016	S5
		14.147	<u>\$9</u>			14.147	S7
	 	14.2	\$8			14.2	S6
	 	14.239	\$8			14.239	S6
		14.3	59			14.3	S7
deasurements mad	e with	14.348	SØ			14.348	87
COM 708 MII G.	1	17.070					
SB filter width 2.4	KHZ	10.057	Q2 \$2			10.057	SO
re-amp off		10.007	4. 7.				
Antennae: Hustler 5	4" mast	7.303	\$6			7.303	S4
with 400W resonato		7.249	\$6			7.249	S4
each band.	1	7.2	\$6			7.2	S4
Mounted on a 2003	Chevrolet	7.154	\$6			7.154	S4
Silverado pickup, riç	hi mar	7.068	\$6			7.068	S4
oumper, 18' of RG5		7.04	\$6			7.04	84
		7.028	\$6			7,028	84
	1	7.020	 			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	†	1 4	Q1 S0	 	 	4	S0
	†	3.975	\$3	<u> </u>	<u> </u>	3.975	<u>\$1</u>
	 	3.957	\$5		 	3.957	<u>\$3</u>
	†	3.927	86	<u> </u>	 	3.927	S4
	T:	3.9	\$7			3.9	85
	<u> </u>	3.892	\$8	<u> </u>		3.892	S6
		3.852	\$6		 	3.852	\$4
	 	3,748	83			3.748	
	†	3.770	1 33	 	<u> </u>	3.740	S1

The following report and attached e-mail was recorded by Ernie Cummings, K6XF on May 31, 2004 at 10:45 AM and on June 8, 2004 at 9:30 AM.

Equipment used is as follows:

Receiver-

Panasonic RF-2000 8 band shortwave receiver 1.7 Mhz through 30 Mhz

double superhetrodyne (Rated Excellent Receiver)

Antenna-

38 inch whip incorporated into the receiver.

Distance from power distribution line 20 to 2500 feet. At 20 feet signal was max meter Scale and at 2500 feet signal was half scale.

Report of Harmful Interference From a Broadband Over Power Line Transmission COTTONWOOD, ARIZONA 86326

Name of complainant: Floyd E. Cummings (Ernie)

Call sign: K6XF

Station location: 133 Lampliter Village City, State, Zip: Clarkdale, AZ 86324

Telephone: 928-649-3562

Email: ernie@cummings.net - k6xf@commspeed.net

Description of Interference: Strong interference over-riding WWW on 10 & 15 Mhz

The 20 meter Amateur Radio Band on USB reception was unusable due to BPL

Description: Mobile operation with a Panasonic RF-2200 Receiver 8 Band

1.7 to 30 MHZ double Superhetrodyne (rated excellent HF receiver)

Antenna: 38 inch Whip

Distance of antenna from power distribution line: 20 to 2500 feet

. At 20 feet signal was max meter scale at 2500 feet signal half scale

Log of interference:

Date	Time MST	Frequency Mhz	Receive Mode	Interfering signal strength	Description
5-31-04	10:45 AM	11.4 to 16	AM	Meter Full scale	Continuous broadband carrier with Modulating data sounds 2030 Cherry St Cottonwood,AZ
6-0 8-04	9:30 AM	10 to 16	AM	Meter Full scale	Continuous broadband Carrier with Modulating Data sounds 1600 Block Cottonwood Street Cottonwood, AZ 86326

The following report and attached e-mail was recorded by Ernie Cummings, K6XF on May 31, 2004 at 10:45 AM and on June 8, 2004 at 9:30 AM.

Equipment used is as follows:

Receiver-

Panasonic RF-2000 8 band shortwave receiver 1.7 Mhz through 30 Mhz

double superhetrodyne (Rated Excellent Receiver)

Antenna-

38 inch whip incorporated into the receiver.

Distance from power distribution line 20 to 2500 feet. At 20 feet signal was max meter Scale and at 2500 feet signal was half scale.

Report of Harmful Interference From a Broadband Over Power Line Transmission COTTONWOOD, ARIZONA 86326

Name of complainant: Floyd E. Cummings (Ernie)

Call sign: K6XF

Station location: 133 Lampliter Village City, State, Zip: Clarkdale, AZ 86324

Telephone: 928-649-3562

Email: emie@cummings.net - k6xf@commspeed.net

Description of Interference: Strong interference over-riding WWW on 10 & 15 Mhz

The 20 meter Amateur Radio Band on USB reception was unusable due to BPL

Description: Mobile operation with a Panasonic RF-2200 Receiver 8 Band

1.7 to 30 MHZ double Superhetrodyne (rated excellent HF receiver)

Antenna: 38 inch Whip

Distance of antenna from power distribution line: 20 to 2500 feet

. At 20 feet signal was max meter scale at 2500 feet signal half scale

Log of inte	Time MST	Frequency Mhz	Receive Mode	Interfering signal strength	Description
5-31-04	10:45 AM	11.4 to 16	AM	Meter Full scale	Continuous broadband carrier with Modulating data sounds 2030 Cherry St Cottonwood, AZ
6-08-04	9:30 AM	10 to 16	AM	Meter Full scale	Continuous broadband Carrier with Modulating Data sounds 1600 Block Cottonwood Street Cottonwood, AZ 86326
			·		

The following report was recorded by Mike Kinney, KU7W and Norm Vandiver, N7VF on June 4, 2004 approximately 8:00PM to 10:30 PM.

Equipment used is as follows:

Receiver-

Icom IC706MK11G solid state

Mode-

SSB

Bandwidth-

2.4 Khz filter

Pre-amp-

Off

Antenna-

Hustler 54 inch mast with 400 watt resonators for each band mounted on

right rear bumper of 2003 Chevrolet pickup.

Feedline-

18 feet RG-58 with velocity factor of 66% and rated loss of 4.5 DB at 100

feet.

Site #1 Sawmill Cove:

Signal strength readings were taken at the injection point from 3.587 Mhz through 4.001 Mhz, 7.041 Mhz through 7.306 Mhz, 10.003 Mhz through 10.048 Mhz, 18.105 Mhz through 18.162 Mhz, 14.098 Mhz through 14.308 Mhz, 21.105 Mhz through 21.448 Mhz, 24.916 Mhz through 24.999 Mhz and 28.185 Mhz through 29.204 Mhz.

Traveling on Mingus View Street away from the injection point, readings were taken on 3.936 Mhz to distances out as follows:

1/10 mile-

S-9+ 10DB

2/10 mile-

S-9 3/10 mile-S-9

3 ½ / 10 mile- S-8

4/10 mile-

S-3

5/10 mile-

S-1 but very audible

Site #2 American Heritage Academy:

Signal strength readings were taken at the repeater point on SSB from 3.748 Mhz through 4.000 Mhz, 7.028 Mhz through 7.303 Mhz, 14.016 Mhz through 14.348 Mhz, 21.044 Mhz through 21.449 Mhz and 28.600 Mhz through 29.200 Mhz.

Signal strength readings were also taken at the repeater point in the AM mode which produced higher S meter readings on 29.195 Mhz, 28.010 Mhz and 14.200 Mhz than in the SSB mode.

Subject: BPL

Mike & Norm....

Today, Monday May 31 beginning at 0945 I drove over to two of the BPL locations in Cottonwood, one with overhead power lines and one with underground power lines.

And with my Shortwave HF receiver and a small whip antenna, I tuned the HF spectrum and heard the broadband signal at S-9+ at both locations. Driving at a 90 degree angle from the overhead lines it continued for 0.2 of a mile.

I discovered that if I looked for the transformers at the underground AC power cable location, that is where I got the S-9 signal. Anywhere that there was a transformoer that fed the underground cables, it pegged the meter.

My receiver is not one for gathering data, however it is valid in that it is commonly used by SWL folks, and the interference was at locations on the HF band that shortwave listeners would be tuning, the BPL made that part of the HF Band unusable, it wiped out the use of those shortwave frequencies.

Ernie Cummings - K6XF webmaster@vvara.org Website: www.vvara.org Signal strength readings were also taken at the repeater point in the FM mode which produced yet higher S meter readings on 29.195 Mhz, 28.010 Mhz, 14.200 Mhz and 14.500 Mhz.

ction	*3.936 MHz			
Signal Strength	Miles from Injection Site	Signal Strength		
S8				
	Traveling on Minugs View Str	eet, away from		
	the Injection Site			
	.1 mile	10/89		
	.2 mile	S9		
	.3 mile	S9		
	.35 mile	S8		
	.4 mile	S3		
59	.5 mile	S1 Q5		
- 30				
\$5				
30				
S7				
30				
90.02				
3043				
9.5				
high noise	Measurements made with I	COM		
from	706 MII G.			
		IZ		
autospilote	Preamo Off			
10/59	Antenna: Hustler 54" mast	with		
	400W resonators for each	pand.		
	Mounted on a 2003 Chevol	et .		
	Silverado pickup, right rear			
	humper, 18' of RG58 coex.			
	Julipei. 13 G. 113			
40/S9				
	10/S9 20/S9 60/S9 40/S9 40/S9 30/S9	Signal Strength Signal Strengt		

Site #1: Lat: 34 43' 43" N Long: 112 00' 03" W

RFI Measurements of BPL at Cottonwood, Arizona 6/4/2004 Site #2

At Repeater		AM Mo	de	FM Mode		
EDECLIENCY Mbz	Signal Strength	FREQUENCY Mhz	Signal Strength	FREQUENCY Mhz	Signal Strength	
29.2	S6	29.195	20/59	29.195	60/89	
29.162	S9		•			
28.102						
28.6	S8	28.01	30/89	28.01	60/59	
50.0						
21.449	S7					
21.416	S8					
21.359	S8					
21.044	S7					
						
14.016	S6					
14.147	S6			140	30/\$9	
14.2	S7	14.2	S9	14.2	30/38	
14.239	S6					
14.3	S7			14.5	20/59	
14.348	S7			14.5	20138	
7.303	high noise					
7.249	from					
7.2	atmosphere			Measurements mad	to with ICOM	
7.154				706 MII G.		
7.068				Sideband filter widt	h 2 4 KH7	
7.04	<u> </u>			Preamp Off	11 2.7 14 12	
7.028				Antenna: Hustler 5	(" mast with	
			ļ	400W resonators for	y each hand	
4			 	Mounted on a 2003	Chevolet	
3.975				Silverado pickup, r	oht reer	
3.957				human 19 of PO	SR coey	
3.927				bumper. 18' of RG58 coex.		
3.9			<u> </u>	 		
3.892				 		
3.852			<u> </u>		 	
3.748		<u> </u>	<u></u>	<u> </u>	<u> </u>	

The following report was recorded by Mike Kinney, KU7W on June 6, 2004 from 1:00 PM through 5:00 PM local time using different modes.

Equipment used is as follows:

Receiver-

Icom IC706MK11G solid state

Mode-

SSB, CW, AM & FM

Bandwidth-

2.4 Khz filter SSB and CW, 8.00 Khz - AM, 8.00 Khz- FMN & 12.00

Khz-FM

Pre-amp-

Off

Antenna-

Hustler 54 inch mast with 400 watt resonators for each band mounted on

right rear bumper of 2003 Chevrolet pickup.

Feedline-

18 feet RG-58 with velocity factor of 66% and rated loss of 4.5 DB at 100

feet.

It should be noted that as the radio was changed to different modes the signal strength of the BPL signals intensified dramatically as a result of wider bandwidth being used in the radio to accommodate different modes.

At both sites, in some modes, BPL signals completely pegged the radio meter at S-9+60DB making it virtually impossible to hear any stations that may be calling in those particular modes regardless of how much power they may be using as the BPL signals had completely saturated radio receiver.

BPL Signal Strength Readings using different modes. Recorded June 6, 2004 from 1:00pm local through 5:00 pm local time in the Cottonwood, Az. Area.

Radio and antenna information:

1com 706Mk 11 G

Preamp off

Selectivity: 3.00 khz SSB, CW

8.00 khz AM 8.00 khz FMN 12.00 khz FM\

Hustler Antenna- 54 inch mast bumper mounted located right rear corner 2003 Chevrolet pickup. Using 400 watt resonators for each band

Coax is 18 feet RG 58. Rated loss 4.5DB at 100 feet. Velocity Factor- 66%.

Signal readings were taken by the following and were at the BPL sites

Mike Kinney KU7W 1652 E. Sierra Drive Cottonwood, Az. 86326

BPL Site #1- Sawmill Cove Area Repeater

Freq. in Mhz	SSB	CW	AM	FM
28.045	S-0	S-0	S-5	S-2
28.250	S-0	S-0	S-5	S-3
28.450	S-1	S-0	S-4	S-3
28.650	S-0	S-0	S-2	S-2
28.850	S-0	S-0	S-1	S-2
29.000	S-0	S-0	S-0	S-2
29.050	S-0	S-0	S-1	S-2
29.200	S-0	S-0	S-0	S-0
29.300	S-0	S-0	S-0	S-0
29.350	S-0	S-0	S-0	S-0
24.900	S-9	S-9	S9+20	S9+60
24.960	S-9	S9+10	S9+20	S9+60
24.990	S9+10	S-9	S9+20	S9+60
21.045	S-5	S-6	S-7	S-8
21.200	S-6	S-1	S-7	S-7

Freq. in mhz	SSB	CW	AM	FM
21.300	S-2	S-5	S-7	S-7
21.400	S-5	S-0	S-6	S-7
21.450	S-3	S-5	S-7	S-6
18.059	S-0	S-0	S-3	S-1
18.121	S-0	S-0	S-0	S-0
18.180	S-0	S-0	S-0	S-0
14.010	S-6	S-6	S-0	S-0
14.150	S-2	S-7		
14.250	S-8		S-5	
14.300	S-8	S-7	S-9	S9+10
14.350	S-7	S-7	S-9	S9+20
10.000		S9+10	S9+30	S9+60
10.057	S-9	S-9	S9+10	S9+60
10.130	S-9	S-9	S9+10	S9+60
7.060	S+3	S-4	S-4	
7.102	S-2			
7.200	S-0	-		· . —
7.250				-
7.300	S-3			
3.600	S-9	S-9	S9+30	S9+60
3.510	S9+10	S9+10	S9+20	S 9+6 0
3.772	S9+20	S9+10	S9+30	S 9+6 0
3.803	S9+10	S9+10	S9+30	S9+60
3.850	S9+20	S9+30	S9+60	S9+60
3.890	S9+30	S9+40	S9+60	S 9+6 0
3.900	S9+30	S9+30	S9+60	S 9+6 0
3.930	S9+20	S9+30	S9+60	S9+60
3.950	S9+10	S9+10	S9+40	S9+60
4.000	S9+10	S9+10	S9+40	S9+60

BPL Site #2 American Heritage Academy Repeater

Freg. in mhz	SSB	CW	AM	FM
28.045	S9+10	S-9	S9+30	S9+60
28.250	S9+10	S9+10	S9+30	S9+60
28.450	S-9	S-9	S9+20	S9+60
28.650	S-8	S9+10	S9+20	S9+60
28.850	S-8	S9+10	S9+20	S9+60

Freq. in mhz	SSB	CW	AM	FM
29.000	S9+10	S9+20	S9+30	S9+60
29.200	S-7	S-6	S-9	S9+10
29.350	S-4	S-4	S-7	S-5
				~ .
24.900	S-4	S-3	S-7	S-4
24.960	S-3	S-3	S-7	S-4
24.990	S-1	S-1	S-7	S-2
21.045	S-9	S-9	S9+20	S9+60
21.200	S9+10	S-9	S9+20	S9+60
21.300	S-9	S-9	S9+10	S9+60
21.400	S-8	S-8	S9+10	S9+60
21.450	S-8	S-9	S9+10	S9+40
18.059	S-5	S-5	S-8	S-4
18.121	S-5	S-4	S-8	S-6
18.180	S-5	S-0	S-7	S-5
14.010	S-8	S-7	S9+10	S9+60
14.150	S-8	S-9	S9+20	S9+60
14.250	S-9	S-8	S9+20	S9+60
14.300	S-9	S-8	S9+10	S9+60
14.350	S-7	S-8	S9+10	S9+60
10.000	0.7	0.7	9.0	00.20
10.000	S-7	S-7	S-9	S9+30
10.057	S-6	S-5	S-8	S9+10
10.130	S-6	S-6	S-8	S-9
7.060	S-6	S-5	S-7	S-9
7.102	S-6	S-6	S-8	S-9
7.200	S-6	S-6	S-7	S-9
7.250	S-6	S-5	S-7	S-9
7.300	S-6	S-5	S-7	S-8
3.772	S-5	S-5	S-6	S-6
3.803	S-5	S-5	S-6	S-7
3.850	S-5	S-5	S-8	S-9
3.890	S-7	S-6	S-9	S9+40
3.900	S-7	S-7	S-9	S9+30
3.930	S-5	S-5	S-7	S-9
3.950	S-4	S-4	S-6	S-6
	•			

BPL Site #2 Birch Street Apartments Repeater

Freq. in mhz	SSB	CW	AM	FM
28.045	S-4	S-6	S-8	S-9
28.250	S-4	S-5	S-6	S-8
28.450	S-6	S-6	S-8	S9+20
28.650	S-6	S-7	S-9	S9+30
28.850	S-6	S-8	S9+10	S9+60
29.000	S-8	S-7	S9+10	S9+60
29.050	S-8	S-8	S9+10	S9+60
29.200	S-3	S-2	S-7	S-4
29.300	S-0	S-0	S-3	S-2
29.350	S-0	S-0	S-2	S-1
27.550	5-0	50	5 2	
24.900	S-0	S-0	S-6	S-0
24.960	S-0	S-0	S-5	S-2
24.990	S-0	S-0	S-6	S-2
21.045	S-6	S-6	S-8	S-9
21.200	S-7	S-6	S-9	S9+10
21.300	S-6	S-7	S-8	S9+20
21.400	S-7	S-6	· S-9	S9+20
21.450	S-6	S-7	S-9	S9+20
18.059	S-0	S-0	S-5	S-0
18.121	S-0	S-0	S-6	S-0
18.180	S-0	S-0	S-6	S-2
		20.10		90.00
14.010	S9+20	S9+10	S9+30	S9+60
14.150	S9+20	S9+30	S9+40	S9+60
14.250	S9+30	S9+20	S9+40	S9+60
14.300	S9+30	S9+20	S9+40	S9+60
14.350	S9+10	S9+20	S9+40	S9+60
10.000				
10.000	100 cm 100			
10.057	S-0	S-0	S-4	S-2
10.130	5-0	5-0	3 -1	3-2
7.060	S-9	S-8	S9+20	S9+60
7.102	S-9	S-9	S9+20	S9+60
7.200	S-9	S-9	S9+10	S9+60
7.250	S-8	S-8	S-9	S9+40
7.300	S-7	S-7	S-9	S9+20
		- ·		
3.772	S-0	S-0	S-6	S-2
3.803	S-0	S-0	S-5	S-3
3.850	S-0	S-0	S-6	S-5
				- -

Freq. in mhz	SSB	CW	AM	<u>FM</u>	
3.890	S-4	S-4	S-7	S-7	• •
3.900	S-4	S-5	S-6	S-6	
3.930	S-0	S-0	S-0	S-0	
3.950	S-0	S-0	S-0	S-0	
				•	
. •					•

The following report was recorded by Norm Vandiver, N7VF, on June 17, 2004 at 11:50 AM while using mobile operations at Birch Street and 16th street in Cottonwood.

Equipment being used:

Radio-

Elecraft K-2 solid state

Mode-

USB

Bandwidth-

2.2 Khz filter

Pre-amp-

On

RF-Gain-

Maximum

Antenna-

Hustler vertical with 54 inch mast and 10 meter 1000 watt resonator

mounted on left front fender of 1987 Chevrolet pickup.

Distance from power line distribution line and equipment-Approximately 2,288 feet. Frequency being used at the time to communicate with another station was 28.500 Mhz.

Log of interference: N7VF

Date	Time	Frequency '	Receive	Interfering	Description
		. •	Mode	signal	
				strength	
June 17 04	1150 Am	28500	USB	55	BPL Corrier with Modulation Clicking -
		this con	reved	a specto	well up to 58 on the
		13 2912 5 meter	omHZ of the	Elecry	At K. S. Tranciver.
٠				·	

the tests being run have a serious Flaw. Proagation from an open Long wire antenna is being Ignored!

Momman Wandiver

In respector ET #04-37" NPRM

Report of Harmful Interference From a Broadband Over Power Line Trial

or Deployment	
Name of complainant: Norman W Vand	diver
Toll sign (if applicable): N7VF	
Station location: Mobile at Birch 1st 9	-16 st Cottonwood AZ 86322
Mailing address (if different): 1862 arena Del-	Loma
City, State, Zip: Camp Vorde 77 863	
Telephone: 928-567-9881 Email: N7VF	O Kachina. net
Description of Interference: Comiers Spaced 1.6	KHZ from 28300
ther out the spectrum of 28300 to 2	9.120 mHZ with
Modulation clicking. Much worse	on PM Than 3700 g
Description of station: Vehical-mounted Hu resonator. This is antonna is connected to	The Vertical 54 with 10 meters
reconctor. This is antonna is connected to	(1) (10to # 1 m tin (2, 2kHZ)
Receiver(s) affected: Elecraft K-2 pre amp on	1, REgain Max.
Antenna type: Nusua osqua	
Antenna location: Mounted on Left front Fe	nder of Chec Pick-Up 1987
Distance of antenna from own house (feet):	
Distance of antenna from neighboring houses (feet):	
Distance of antenna from power distribution line or equipment	•

The following report was recorded by Steve Pearson, KC7TIL, on June 17, 2004 between 8:30 AM and 11:15 AM while operating mobile in the vicinity of the BPL sites in the Cottonwood area.

Equipment used is as follows:

Receiver-

Kenwood TS-450 S

Antenna-

Webster Bandspanner

Modes-

SSB, FM

The report includes a baseline report conducted at the Cottonwood Airport in which readings were taken in the 10 meter, 12 meter, 15 meter, 17 meter, 20 meter, 40 meter and 80 meter bands using both the SSB mode and also the FM mode. Highest S-meter readings were recorded on the 20 meter and 80 meter bands at S-9

Readings were then taken in the vicinity of the American Heritage Academy BPL site in the 10 meter, 12 meter, 15 meter, 17 meter, 20 meter, 40 meter and 80 meter bands using both SSB and FM modes. Highest S-Meter readings were recorded in the 10 meter, 15 meter, 20 meter, 40 meter and 80 meter bands in the FM mode at S-9+60DB. Highest SSB mode S-meter readings were recorded in the 10 meter and 20 meter bands at S-9+20DB.

Readings were also taken in the vicinity of the Sawmill Cove BPL site in the 10 meter, 12 meter, 15 meter, 17 meter, 20 meter, 40 meter and 80 Meter bands using both SSB and FM modes. Highest S-meter readings were recorded in the 20 meter and 80 meter bands in the Fm mode at S-9+60DB. Highest SSB mode S- meter readings were recorded in the 80 meter band at S-9+10DB.